enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.

  3. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for a < b , the difference g ( b ) − g ( a ) is equal to the integral of ...

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    Product rule: For two differentiable functions f and g, () = +. An operation d with these two properties is known in abstract algebra as a derivation . They imply the power rule d ( f n ) = n f n − 1 d f {\displaystyle d(f^{n})=nf^{n-1}df} In addition, various forms of the chain rule hold, in increasing level of generality: [ 12 ]

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing ⁠ ⁠, and the limit = (+) exists. [2] This means that, for every positive real number ⁠ ⁠, there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.

  6. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    This allows the definition of a function without naming. ... Every function : ... The derivative of a real differentiable function is a real function.

  7. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0. The theorem cannot be applied to this function because it does not satisfy the condition that the function must be differentiable for every x in the open interval.

  8. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    The definition of a complex analytic function is obtained by replacing, in the definitions above, "real" with "complex" and "real line" with "complex plane". A function is complex analytic if and only if it is holomorphic i.e. it is complex differentiable. For this reason the terms "holomorphic" and "analytic" are often used interchangeably for ...

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    It states that every function that results from the differentiation of another function has the intermediate value property: the image of an interval is also an interval. When ƒ is continuously differentiable ( ƒ in C 1 ([ a , b ])), this is a consequence of the intermediate value theorem .