enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    The rate of blood flow out of the heart (often expressed in L/min) is known as the cardiac output (CO). Blood being pumped out of the heart first enters the aorta , the largest artery of the body. It then proceeds to divide into smaller and smaller arteries, then into arterioles , and eventually capillaries , where oxygen transfer occurs.

  3. Davenport diagram - Wikipedia

    en.wikipedia.org/wiki/Davenport_diagram

    Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”

  4. Chloride shift - Wikipedia

    en.wikipedia.org/wiki/Chloride_shift

    Chloride shift (also known as the Hamburger phenomenon or lineas phenomenon, named after Hartog Jakob Hamburger) is a process which occurs in a cardiovascular system and refers to the exchange of bicarbonate (HCO 3 −) and chloride (Cl −) across the membrane of red blood cells (RBCs).

  5. Venous return - Wikipedia

    en.wikipedia.org/wiki/Venous_return

    Note that, for cardiac function curve, "central venous pressure" is the independent variable and "systemic flow" is the dependent variable; for vascular function curve, the opposite is true. Venous return curves showing the normal curve when the mean systemic filling pressure (Psf) is 7 mm Hg and the effect of altering the Psf to 3.5, 7, or 14 ...

  6. Starling equation - Wikipedia

    en.wikipedia.org/wiki/Starling_equation

    Efflux occurs along the whole length of a capillary. Fluid filtered to the space outside a capillary is mostly returned to the circulation via lymph nodes and the thoracic duct. [5] A mechanism for this phenomenon is the Michel-Weinbaum model, in honour of two scientists who, independently, described the filtration function of the glycocalyx.

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations, in their full and simplified forms, help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other problems. Coupled with Maxwell's equations, they can be used to model and study magnetohydrodynamics.

  8. Pulsatile flow - Wikipedia

    en.wikipedia.org/wiki/Pulsatile_flow

    The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. [1] The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.

  9. Arrow pushing - Wikipedia

    en.wikipedia.org/wiki/Arrow_pushing

    Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.

  1. Related searches movement along curve vs shift mechanism of reaction is known as blood flow

    what is the chloride shifthow does chloride shift work