enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant R is defined as the Avogadro constant N A multiplied by the Boltzmann constant k (or k B): = = 6.022 140 76 × 10 23 mol −1 × 1.380 649 × 10 −23 J⋅K −1 = 8.314 462 618 153 24 J⋅K −1 ⋅mol −1. Since the 2019 revision of the SI, both N A and k are defined with exact numerical values when expressed in SI units. [2]

  3. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  4. Fugacity capacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity_capacity

    Where: R is the Ideal gas constant (8.314 Pa·m 3 /mol·K); T is the absolute temperature (K); H is the Henry's law constant for the target chemical (Pa/m 3 mol); K ow is the octanol-water partition coefficient for the target chemical (dimensionless ratio); P s is the vapor pressure of the target chemical (Pa); and v is the molar volume of the ...

  5. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  6. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    The constants appearing in the above equation are available in the following table when p is in kPa, V m is in , T is in K and R = 8.314 [7] Gas A 0 a B 0 b c; Air ...

  7. Acetic acid (data page) - Wikipedia

    en.wikipedia.org/wiki/Acetic_acid_(data_page)

    −483.5 kJ/mol Standard molar entropy S o liquid: 158.0 J/(mol K) Enthalpy of combustion, Δ c H o –876.1 kJ/mol Heat capacity c p: 123.1 J/(mol K) Gas properties Std enthalpy change of formation Δ f H o gas –438.1 kJ/mol Standard molar entropy S o gas: 282.84 J/(mol K) Heat capacity c p: 63.4 J/(mol K) van der Waals' constants [2] a ...

  8. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  9. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    R is the gas constant, 8.314K −1 mol −1; T is the absolute temperature; To simplify, a volume of gas may be expressed as the volume it would have in standard conditions for temperature and pressure, which are 0 °C (32 °F) and 100 kPa. [2]