enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  3. Method of steepest descent - Wikipedia

    en.wikipedia.org/wiki/Method_of_steepest_descent

    In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...

  4. Saddlepoint approximation method - Wikipedia

    en.wikipedia.org/wiki/Saddlepoint_approximation...

    The saddlepoint approximation method, initially proposed by Daniels (1954) [1] is a specific example of the mathematical saddlepoint technique applied to statistics, in particular to the distribution of the sum of independent random variables.

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    If D(a, b) < 0 then (a, b) is a saddle point of f. If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy ...

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Refining this property allows us to test whether a critical point is a local maximum, local minimum, or a saddle point, as follows: If the Hessian is positive-definite at x , {\displaystyle x,} then f {\displaystyle f} attains an isolated local minimum at x . {\displaystyle x.}

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The two critical points occur at saddle points where x = 1 and x = −1. In order to solve this problem with a numerical optimization technique, we must first transform this problem such that the critical points occur at local minima. This is done by computing the magnitude of the gradient of the unconstrained optimization problem.