Search results
Results from the WOW.Com Content Network
In fluid dynamics, a flow is considered incompressible if the divergence of the flow velocity is zero. However, related formulations can sometimes be used, depending on the flow system being modelled. Some versions are described below: Incompressible flow: =. This can assume either constant density (strict incompressible) or varying density flow.
In most flows of liquids, and of gases at low Mach number, the density of a fluid parcel can be considered to be constant, regardless of pressure variations in the flow. Therefore, the fluid can be considered to be incompressible, and these flows are called incompressible flows. Bernoulli performed his experiments on liquids, so his equation in ...
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
Referring to the adjacent diagram, using Bernoulli's equation in the special case of steady, incompressible, inviscid flows (such as the flow of water or other liquid, or low-speed flow of gas) along a streamline, the theoretical static pressure drop at the constriction is given by
Incompressible flow – Fluid flow in which density remains constant; Inviscid flow – Flow of fluids with zero viscosity (superfluids) Isothermal flow – Model of fluid flow; Open channel flow – Type of liquid flow within a conduit; Pipe flow – Type of liquid flow within a closed conduit; Pressure-driven flow
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...
so that for incompressible, irrotational flow (=), the second term on the left in the Navier-Stokes equation is just the gradient of the dynamic pressure. In hydraulics , the term u 2 / 2 g {\displaystyle u^{2}/2g} is known as the hydraulic velocity head (h v ) so that the dynamic pressure is equal to ρ g h v {\displaystyle \rho gh_{v}} .
It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 [1] and Gotthilf Heinrich Ludwig Hagen, [2] and published by Hagen in 1839 [1] and then by Poiseuille in 1840–41 and 1846. [1]