Search results
Results from the WOW.Com Content Network
Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...
This evolution is reflected in a broadening of the main sequence band which contains stars at various evolutionary stages. [ 41 ] Other factors that broaden the main sequence band on the HR diagram include uncertainty in the distance to stars and the presence of unresolved binary stars that can alter the observed stellar parameters.
A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light. Because the time required for a white dwarf to reach this state is calculated to be longer than the current age of the universe (13.8 billion years), no black dwarfs are expected to exist in the ...
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core.
Stellar evolution tracks (blue lines) for the pre-main-sequence. The nearly vertical curves are Hayashi tracks. Low-mass stars have nearly vertical evolution tracks until they arrive on the main sequence. For more-massive stars, the Hayashi track bends to the left into the Henyey track. Even more-massive stars are born directly onto the Henyey ...
Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; Wikidata item; ... Pages in category "Stellar evolution"
Theoretical calculations of stellar structure and the evolution of stars produce plots that match those from observations. This type of diagram could be called temperature-luminosity diagram , but this term is hardly ever used; when the distinction is made, this form is called the theoretical Hertzsprung–Russell diagram instead.
Schwarzschild's work in the fields of stellar structure and stellar evolution led to improved understanding of pulsating stars, differential solar rotation, post-main sequence evolutionary tracks on the Hertzsprung-Russell diagram (including how stars become red giants), hydrogen shell sources, the helium flash, and the ages of star clusters.