enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    A statement of this theorem is that any physical law can be expressed as an identity involving only dimensionless combinations (ratios or products) of the variables linked by the law (e. g., pressure and volume are linked by Boyle's Law – they are inversely proportional). If the dimensionless combinations' values changed with the systems of ...

  3. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.

  6. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.

  7. Density - Wikipedia

    en.wikipedia.org/wiki/Density

    In contrast, the density of gases is strongly affected by pressure. The density of an ideal gas is =, where M is the molar mass, P is the pressure, R is the universal gas constant, and T is the absolute temperature. This means that the density of an ideal gas can be doubled by doubling the pressure, or by halving the absolute temperature.

  8. Yes, food and drinks taste different on a plane and there's a ...

    www.aol.com/yes-food-drinks-taste-different...

    A travel expert revealed the science of why food and drinks ... expert revealed the science of why food and drinks taste different on a plane — and what he chooses to order once the beverage ...

  9. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.