Ads
related to: multiplying exponents using different bases chart for math- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- K-8 Standards Alignment
Search results
Results from the WOW.Com Content Network
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as b n, where b is the base and n is the power; often said as "b to the power n ". [1]
Radix is the traditional term for base, but usually refers then to one of the common bases: decimal (10), binary (2), hexadecimal (16), or sexagesimal (60). When the concepts of variable and constant came to be distinguished, the process of exponentiation was seen to transcend the algebraic functions .
Plain text, programming languages, and calculators also use a single asterisk to represent the multiplication symbol, [6] and it must be explicitly used; for example, 3x is written as 3 * x. Rather than using the ambiguous division sign (÷), [ a ] division is usually represented with a vinculum , a horizontal line, as in 3 / x + 1 .
When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Exponentiating the next leftward a (call this the 'next base' b), is to work leftward after obtaining the new value b^c. Working to the left, use the next a to the left, as the base b, and evaluate the new b^c. 'Descend down the tower' in turn, with the new value for c on the next downward step.
Ads
related to: multiplying exponents using different bases chart for math