Search results
Results from the WOW.Com Content Network
Duff realized that to handle cases where count is not divisible by eight, the assembly programmer's technique of jumping into the loop body could be implemented by interlacing the structures of a switch statement and a loop, putting the switch's case labels at the points of the loop body that correspond to the remainder of count/8: [1]
Switch expressions are introduced in Java SE 12, 19 March 2019, as a preview feature. Here a whole switch expression can be used to return a value. There is also a new form of case label, case L-> where the right-hand-side is a single expression. This also prevents fall through and requires that cases are exhaustive.
Switch statements can allow compiler optimizations, such as lookup tables. In dynamic languages, the cases may not be limited to constant expressions, and might extend to pattern matching, as in the shell script example on the right, where the *) implements the default case as a glob matching any string.
The switch parser function, coded as "#switch", selects the first matching branch in a list of choices, acting as a case statement. Each branch can be a value , an expression ( calculation ), or a template call, [ 1 ] evaluated and compared to match the value of the switch.
A task switch can be explicitly triggered with a CALL or JMP instruction targeted at a TSS descriptor in the global descriptor table. It can occur implicitly when an interrupt or exception is triggered if there's a task gate in the interrupt descriptor table (IDT). When a task switch occurs the CPU can automatically load the new state from the TSS.
The most common example of the correct use of a switch within a loop is an inversion of control such as an event handler. In event handler loops, the sequence of events is not known at compile-time, so the repeated switch is both necessary and correct (see event-driven programming, event loop and event-driven finite state machine).
A canonical example of a data-flow analysis is reaching definitions. A simple way to perform data-flow analysis of programs is to set up data-flow equations for each node of the control-flow graph and solve them by repeatedly calculating the output from the input locally at each node until the whole system stabilizes, i.e., it reaches a fixpoint.
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]