Search results
Results from the WOW.Com Content Network
Integration of an absorption coefficient over a path from s 1 and s 2 affords the optical thickness (τ) of that path, a dimensionless quantity that is used in some variants of the Schwarzschild equation. When emission is ignored, the incoming radiation is reduced by a factor for 1/e when transmitted over a path with an optical thickness of 1.
Diffusion cloud chamber with tracks of ionizing radiation (alpha particles) that are made visible as strings of droplets. In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance.
The most general form of Cauchy's equation is = + + +,where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.
As mentioned above, chemical molar flux of a component A in an isothermal, isobaric system is defined in Fick's law of diffusion as: = where the nabla symbol ∇ denotes the gradient operator, D AB is the diffusion coefficient (m 2 ·s −1) of component A diffusing through component B, c A is the concentration (mol/m 3) of component A. [9]
The signal delay of a wire or other circuit, measured as group delay or phase delay or the effective propagation delay of a digital transition, may be dominated by resistive-capacitive effects, depending on the distance and other parameters, or may alternatively be dominated by inductive, wave, and speed of light effects in other realms.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In condensed matter physics, relaxation is usually studied as a linear response to a small external perturbation. Since the underlying microscopic processes are active even in the absence of external perturbations, one can also study "relaxation in equilibrium" instead of the usual "relaxation into equilibrium" (see fluctuation-dissipation theorem).
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.