Search results
Results from the WOW.Com Content Network
Diamond-like carbon (DLC) is a class of amorphous carbon material that displays some of the typical properties of diamond. DLC is usually applied as coatings to other materials that could benefit from such properties. [1] DLC exists in seven different forms. [2] All seven contain significant amounts of sp 3 hybridized carbon atoms.
It is unclear whether the synthesis products are diamond-like solid solutions between carbon and boron nitride or just mechanical mixtures of highly dispersed diamond and c-BN. In 2001, a diamond-like-structured c-BC 2 N was synthesized at pressures >18 GPa and temperatures >2,200 K by a direct solid-state phase transition of graphite-like (BN ...
CZ is made in a number of different colors meant to imitate fancy diamonds (e.g., yellow to golden brown, orange, red to pink, green, and opaque black), but most of these do not approximate the real thing. Cubic zirconia can be coated with diamond-like carbon to improve its durability, but will still be detected as CZ by a thermal probe.
Optical coatings include diamond-like carbon (DLC) and anti-reflective-scratch hybrid coatings. Diamond-like Carbon is a coating that shares diamonds' extreme scratch resistance. Anti-reflective Scratch hybrid coatings contain scratch-resistant additives with anti-reflective coating materials. [4] [5]
Carbon films are thin film coatings which consist predominantly of the chemical element carbon. They include plasma polymer films , amorphous carbon films ( diamond-like carbon , DLC), CVD diamond films as well as graphite films.
Diamond is extremely strong owing to its crystal structure, known as diamond cubic, in which each carbon atom has four neighbors covalently bonded to it. Bulk cubic boron nitride (c-BN) is nearly as hard as diamond. Diamond reacts with some materials, such as steel, and c-BN wears less when cutting or abrading such material. [4]
This material is marketed as "mystic" by many dealers. Unlike diamond-like carbon and other hard synthetic ceramic coatings, the iridescent effect made with precious metal coatings is not durable, due to their extremely low hardness and poor abrasion wear properties, compared to the remarkably durable cubic zirconia substrate.
Five such coatings are TiN (titanium nitride), TiC (titanium carbide), Ti(C)N (titanium carbide-nitride), TiAlN (titanium aluminium nitride) and AlTiN (aluminium titanium nitride). (Newer coatings, known as DLC ( diamond-like carbon ) are beginning to surface, enabling the cutting power of diamond without the unwanted chemical reaction between ...