Ad
related to: euler characteristics formula example math questions pdf free printableteacherspayteachers.com has been visited by 100K+ users in the past month
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Resources on Sale
Search results
Results from the WOW.Com Content Network
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.
A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle. It shares some common characteristics with Pascal's triangle . Values of A ( n , k ) {\textstyle A(n,k)} (sequence A008292 in the OEIS ) for 0 ≤ n ≤ 9 {\textstyle 0\leq n\leq 9} are:
In the mathematical field of Galois cohomology, the local Euler characteristic formula is a result due to John Tate that computes the Euler characteristic of the group cohomology of the absolute Galois group G K of a non-archimedean local field K.
In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. It therefore connects ramification with algebraic topology, in this case.
Leonhard Euler published the polynomial k 2 − k + 41 which produces prime numbers for all integer values of k from 1 to 40. Only 6 lucky numbers of Euler exist, namely 2, 3, 5, 11, 17 and 41 (sequence A014556 in the OEIS). [1] Note that these numbers are all prime numbers. The primes of the form k 2 − k + 41 are
In the special case when the bundle E in question is the tangent bundle of a compact, oriented, r-dimensional manifold, the Euler class is an element of the top cohomology of the manifold, which is naturally identified with the integers by evaluating cohomology classes on the fundamental homology class. Under this identification, the Euler ...
Euler's Gem: The Polyhedron Formula and the Birth of Topology is a book on the formula + = for the Euler characteristic of convex polyhedra and its connections to the history of topology. It was written by David Richeson and published in 2008 by the Princeton University Press , with a paperback edition in 2012.
In differential geometry, the Euler characteristic of an orbifold, or orbifold Euler characteristic, is a generalization of the topological Euler characteristic that includes contributions coming from nontrivial automorphisms.
Ad
related to: euler characteristics formula example math questions pdf free printableteacherspayteachers.com has been visited by 100K+ users in the past month