Search results
Results from the WOW.Com Content Network
The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.
Two-dimensional parabolic coordinates (,) are defined by the equations, in terms of Cartesian coordinates: = = The curves of constant form confocal parabolae = that open upwards (i.e., towards +), whereas the curves of constant form confocal parabolae
Parabolic area: The area between the curve = and the line = Semiparabolic area. The area between the curve = and the axis, from = to = Parabolic spandrel: The area ...
A ballistic trajectory is a parabola with homogeneous acceleration, such as in a space ship with constant acceleration in absence of other forces. On Earth the acceleration changes magnitude with altitude as g ( y ) = g 0 / ( 1 + y / R ) 2 {\textstyle g(y)=g_{0}/(1+y/R)^{2}} and direction (faraway targets) with latitude/longitude along the ...
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates. They possess elliptic paraboloids as one-coordinate surfaces. As such, they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates , both of which are also generalizations ...
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...