Search results
Results from the WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right). In science and engineering , a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes.
In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
With exponential functions, increasing the input by one unit causes the output to increase by a fixed multiple, which is known as the base of the exponential function. If both arguments and values of a function are in the logarithmic scale (i.e., when log(y) is a linear function of log(x)), then the straight line represents a power law:
The study of these differential equations with constant coefficients dates back to Leonhard Euler, who introduced the exponential function e x, which is the unique solution of the equation f′ = f such that f(0) = 1. It follows that the n th derivative of e cx is c n e cx, and this allows solving homogeneous linear differential equations ...
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.