enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The last expression is the second derivative of position (x) with respect to time. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the ...

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  4. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    If f is a function, then its derivative evaluated at x is written ′ (). It first appeared in print in 1749. [3] Higher derivatives are indicated using additional prime marks, as in ″ for the second derivative and ‴ for the third derivative. The use of repeated prime marks eventually becomes unwieldy.

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    When x and y are real variables, the derivative of f at x is the slope of the tangent line to the graph of f at x. Because the source and target of f are one-dimensional, the derivative of f is a real number. If x and y are vectors, then the best linear approximation to the graph of f depends on how f changes in several directions at once.

  8. Del - Wikipedia

    en.wikipedia.org/wiki/Del

    The tensor derivative of a vector field (in three dimensions) is a 9-term second-rank tensor – that is, a 3×3 matrix – but can be denoted simply as , where represents the dyadic product. This quantity is equivalent to the transpose of the Jacobian matrix of the vector field with respect to space.

  9. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    However, Leibniz did use his d notation as we would today use operators, namely he would write a second derivative as ddy and a third derivative as dddy. In 1695 Leibniz started to write d 2 ⋅x and d 3 ⋅x for ddx and dddx respectively, but l'Hôpital, in his textbook on calculus written around the same time, used Leibniz's original forms. [18]