enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    One ATP is invested in Step 1, and another ATP is invested in Step 3. Steps 1 and 3 of glycolysis are referred to as "Priming Steps". In Phase 2, two equivalents of g3p are converted to two pyruvates. In Step 7, two ATP are produced. Also, in Step 10, two further equivalents of ATP are produced. In Steps 7 and 10, ATP is generated from ADP.

  3. Energy charge - Wikipedia

    en.wikipedia.org/wiki/Energy_charge

    Daniel Atkinson showed that when the energy charge increases from 0.6 to 1.0, the citrate lyase and phosphoribosyl pyrophosphate synthetase, two enzymes controlling anabolic (ATP-demanding) pathways are activated, [2] [3] while the phosphofructokinase and the pyruvate dehydrogenase, two enzymes controlling amphibolic pathways (supplying ATP as ...

  4. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The production of ATP is achieved through the oxidation of glucose molecules. In oxidation, the electrons are stripped from a glucose molecule to reduce NAD+ and FAD. NAD+ and FAD possess a high energy potential to drive the production of ATP in the electron transport chain. ATP production occurs in the mitochondria of the cell.

  5. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Including one H + for the transport reactions, this means that synthesis of one ATP requires 1 + 10/3 = 4.33 protons in yeast and 1 + 8/3 = 3.67 in vertebrates. This would imply that in human mitochondria the 10 protons from oxidizing NADH would produce 2.72 ATP (instead of 2.5) and the 6 protons from oxidizing succinate or ubiquinol would ...

  7. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The proton motive force and ATP production can be maintained by intracellular acidosis. [88] Cytosolic protons that have accumulated with ATP hydrolysis and lactic acidosis can freely diffuse across the mitochondrial outer-membrane and acidify the inter-membrane space, hence directly contributing to the proton motive force and ATP production.

  8. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    ATP is the only type of usable form of chemical energy for musculoskeletal activity. It is stored in most cells, particularly in muscle cells. Other forms of chemical energy, such as those available from oxygen and food, must be transformed into ATP before they can be utilized by the muscle cells.

  9. Beta oxidation - Wikipedia

    en.wikipedia.org/wiki/Beta_oxidation

    In practice, it is closer to 14 ATP for a full oxidation cycle as 2.5 ATP per NADH molecule is produced, 1.5 ATP per each FADH 2 molecule is produced and Acetyl-CoA produces 10 ATP per rotation of the citric acid cycle [13] (according to the P/O ratio). This breakdown is as follows: