enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    In the physical realm, many irreversible processes are present to which the inability to achieve 100% efficiency in energy transfer can be attributed. The following is a list of spontaneous events which contribute to the irreversibility of processes. [13] Ageing (this claim is disputed, as aging has been demonstrated to be reversed in mice. [14]

  3. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    As time passes, the gas obviously expands to fill the whole box, so that the final state is a box full of gas. This is an irreversible process, since if the box is full at the beginning (experiment B), it does not become only half-full later, except for the very unlikely situation where the gas particles have very special locations and speeds.

  4. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    Every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking part in the process is increased. In the limit, i.e. for reversible processes, the sum of the entropies remains unchanged. [44] [45] [46] Rather like Planck's statement is that of George Uhlenbeck and G. W. Ford for irreversible phenomena.

  5. Spontaneous process - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_process

    In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium ).

  6. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamic processes artificially imposed by agents in the surroundings of a body also have irreversible effects on the body. For example, when James Prescott Joule used a device that delivered a measured amount of mechanical work from the surroundings through a paddle that stirred a body of water, the energy transferred was received by the ...

  7. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a measure of the irreversibility and may be used to compare engineering processes and machines.

  8. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    He provided in this work a theory of measurement, where the usual notion of wave function collapse is described as an irreversible process (the so-called von Neumann or projective measurement). Using this concept, in conjunction with the density matrix he extended the classical concept of entropy into the quantum domain.

  9. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    Such correlations occur in any system with nontrivially interacting particles, that is, in all systems more complex than an ideal gas. This S is almost universally called simply the entropy. It can also be called the statistical entropy or the thermodynamic entropy without changing the meaning.