Search results
Results from the WOW.Com Content Network
It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". [1] More precisely, given a function :, the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it.
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where is its variable, and , , and are coefficients.The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
A function f from X to Y.The blue oval Y is the codomain of f.The yellow oval inside Y is the image of f, and the red oval X is the domain of f.. In mathematics, a codomain or set of destination of a function is a set into which all of the output of the function is constrained to fall.
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. [note 1] [4] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.
If R is commutative, then one can associate with every polynomial P in R[x] a polynomial function f with domain and range equal to R. (More generally, one can take domain and range to be any same unital associative algebra over R.) One obtains the value f(r) by substitution of the value r for the symbol x in P.