enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    Definition of year and seasons. The length of time for Mars to complete one orbit around the Sun in respect to the stars, its sidereal year, is about 686.98 Earth solar days (≈ 1.88 Earth years), or 668.5991 sols. Because of the eccentricity of Mars' orbit, the seasons are not of equal length.

  3. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    In fact every opposition is followed by a similar one 7 or 8 synodic periods later, and by a very similar one 37 synodic periods (79 years) later. [8] In the so-called perihelic opposition Mars is closest to the Sun and is particularly close to Earth: Oppositions range from about 0.68 AU when Mars is near aphelion to only about 0.37 AU when ...

  4. Sidereal year - Wikipedia

    en.wikipedia.org/wiki/Sidereal_year

    The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 (365.242 190 402 ephemeris days). [ 1 ] At present, the rate of axial precession corresponds to a period of 25,772 years, [ 3 ] so sidereal year is longer than tropical year by 1,224.5 seconds (20 min 24.5 s, ~365.24219*86400/25772).

  5. Mars sol - Wikipedia

    en.wikipedia.org/wiki/Mars_sol

    The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]

  6. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    For example, the synodic period of the Moon's orbit as seen from Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around ...

  7. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period (astronomy) In astronomy, the rotation period or spin period[1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background ...

  8. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    A year has about 365.24 solar days but 366.24 sidereal days. Therefore, there is one fewer solar day per year than there are sidereal days, similar to an observation of the coin rotation paradox. [5] This makes a sidereal day approximately ⁠ 365.24 / 366.24 ⁠ times the length of the 24-hour solar day.

  9. Astronomy on Mars - Wikipedia

    en.wikipedia.org/wiki/Astronomy_on_Mars

    As on Earth, there is a second form of precession: the point of perihelion in Mars's orbit changes slowly, causing the anomalistic year to differ from the sidereal year. However, on Mars, this cycle is 43,000 Martian years (81,000 Earth years) rather than 112,000 years as on Earth.