Search results
Results from the WOW.Com Content Network
Researchers have developed global models using MHD to simulate phenomena within Earth's magnetosphere, such as the location of Earth's magnetopause [24] (the boundary between the Earth's magnetic field and the solar wind), the formation of the ring current, auroral electrojets, [25] and geomagnetically induced currents.
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...
The Earth and most of the planets in the Solar System, as well as the Sun and other stars, all generate magnetic fields through the motion of electrically conducting fluids. [54] The Earth's field originates in its core. This is a region of iron alloys extending to about 3400 km (the radius of the Earth is 6370 km).
A telluric current (from Latin tellūs 'earth'), or Earth current, [1] is an electric current that flows underground or through the sea, resulting from natural and human-induced causes. These currents have extremely low frequency and traverse large areas near or at Earth 's surface. Earth's crust and mantle are host to telluric currents, with ...
The potential virtual temperature , defined by. v + 0.61 r − L {\displaystyle \theta _ {v}=\theta \left (1+0.61r-r_ {L}\right),} is the theoretical potential temperature of the dry air which would have the same density as the humid air at a standard pressure P 0. It is used as a practical substitute for density in buoyancy calculations.
The temperature and pressure inside Jupiter increase steadily inward as the heat of planetary formation can only escape by convection. [55] At a surface depth where the atmospheric pressure level is 1 bar (0.10 MPa), the temperature is around 165 K (−108 °C; −163 °F). The region where supercritical hydrogen changes gradually from a ...