Search results
Results from the WOW.Com Content Network
Fundamentals. The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Three sets involved. [edit] In the left hand sides of the following identities, L{\displaystyle L}is the L eft most set, M{\displaystyle M}is the M iddle set, and R{\displaystyle R}is the R ight most set. Precedence rules. There is no universal agreement on the order of precedenceof the basic set operators.
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory — as a branch of mathematics — is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was ...
Stable roommates problem. In mathematics, economics and computer science, particularly in the fields of combinatorics, game theory and algorithms, the stable-roommate problem (SRP) is the problem of finding a stable matching for an even-sized set. A matching is a separation of the set into disjoint pairs ("roommates").
Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves , algebraic surfaces , or, more generally, algebraic sets , their study is a part of algebraic geometry that is called Diophantine geometry .
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
In set theory, the complement of a set A, often denoted by (or A′), [1] is the set of elements not in A. [2] When all elements in the universe, i.e. all elements under consideration, are considered to be members of a given set U, the absolute complement of A is the set of elements in U that are not in A.