Search results
Results from the WOW.Com Content Network
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...
Animation depicting the process of completing the square. (Details, animated GIF version) In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of and . [1] In terms of a new quantity , this expression is a quadratic ...
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1][2] For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously ...
An example of multiplying binomials is (2x+1)×(x+2) and the first step the student would take is set up two positive x tiles and one positive unit tile to represent the length of a rectangle and then one would take one positive x tile and two positive unit tiles to represent the width. These two lines of tiles would create a space that looks ...
The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding section. If b = 0, the line is a vertical line (that is a line parallel to ...
An alternative way of deriving the quadratic formula is via the method of Lagrange resolvents, [14] which is an early part of Galois theory. [15] This method can be generalized to give the roots of cubic polynomials and quartic polynomials , and leads to Galois theory, which allows one to understand the solution of algebraic equations of any ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
To solve this kind of equation, the technique is add, subtract, multiply, or divide both sides of the equation by the same number in order to isolate the variable on one side of the equation. Once the variable is isolated, the other side of the equation is the value of the variable. [37] This problem and its solution are as follows: Solving for x