Search results
Results from the WOW.Com Content Network
In atomic physics, even–even (EE) nuclei are nuclei with an even number of neutrons and an even number of protons. Even-mass-number nuclei, which comprise 151/251 = ~60% of all stable nuclei, are bosons, i.e. they have integer spin. The vast majority of them, 146 out of 151, belong to the EE class; they have spin 0 because of pairing effects. [1]
Among the 41 even-Z elements that have a stable nuclide, only two elements (argon and cerium) have no even–odd stable nuclides. One element (tin) has three. There are 24 elements that have one even–odd nuclide and 13 that have two even–odd nuclides. The lightest example of this type of nuclide is 3 2 He and the heaviest is 207 82 Pb.
A set of nuclides with equal proton number (atomic number), i.e., of the same chemical element but different neutron numbers, are called isotopes of the element. Particular nuclides are still often loosely called "isotopes", but the term "nuclide" is the correct one in general (i.e., when Z is not fixed).
Also, only four naturally occurring, radioactive odd–odd nuclides have a half-life >10 9 years: potassium-40, vanadium-50, lanthanum-138, and lutetium-176. Odd–odd primordial nuclides are rare because most odd–odd nuclei beta-decay, because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing ...
The most measured quantities in research on nuclear fission are the charge and mass fragments yields for uranium-235 and other fissile nuclides. In this sense, experimental results on charge distribution for low-energy fission of actinides present a preference to an even Z fragment, which is called odd-even effect on charge yield. [1]
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
According to here, collective nuclear rotation of even-even nuclides is being charateristic of having transition energies = / (+), where is the mass number, is the spin and is a constant about . This matches the first table above in this section extremely well.
The 146 even-proton, even-neutron (EE) nuclides comprise ~58% of all stable nuclides and all have spin 0 because of pairing. There are also 24 primordial long-lived even-even nuclides. As a result, each of the 41 even-numbered elements from 2 to 82 has at least one stable isotope, and most of these elements have several primordial isotopes ...