enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    It is widely used in computer vision tasks such as image annotation, [2] vehicle counting, [3] activity recognition, [4] face detection, face recognition, video object co-segmentation. It is also used in tracking objects , for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video.

  3. Face detection - Wikipedia

    en.wikipedia.org/wiki/Face_detection

    Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...

  4. Siamese neural network - Wikipedia

    en.wikipedia.org/wiki/Siamese_neural_network

    It is not obvious at first, but there are two slightly different problems. One is recognizing a person among a large number of other persons, that is the facial recognition problem. DeepFace is an example of such a system. [4] In its most extreme form this is recognizing a single person at a train station or airport. The other is face ...

  5. DeepFace - Wikipedia

    en.wikipedia.org/wiki/DeepFace

    DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.

  6. StyleGAN - Wikipedia

    en.wikipedia.org/wiki/StyleGAN

    A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.

  7. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]

  8. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]

  9. Triplet loss - Wikipedia

    en.wikipedia.org/wiki/Triplet_loss

    The loss function is defined using triplets of training points of the form (,,).In each triplet, (called an "anchor point") denotes a reference point of a particular identity, (called a "positive point") denotes another point of the same identity in point , and (called a "negative point") denotes an point of an identity different from the identity in point and .