Search results
Results from the WOW.Com Content Network
In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every (), , and , , where is the domain of .
One can define positive-definite functions on any locally compact abelian topological group; Bochner's theorem extends to this context. Positive-definite functions on groups occur naturally in the representation theory of groups on Hilbert spaces (i.e. the theory of unitary representations).
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).
The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:
Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.
If the quadratic form f yields only non-negative values (positive or zero), the symmetric matrix is called positive-semidefinite (or if only non-positive values, then negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and ...