enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    The profile for same reaction but with a catalyst is also shown. Figure 13: An energy profile diagram demonstrating the effect of a catalyst for the generic exothermic reaction of X + Y →Z. The catalyst offers an alternate reaction pathway (shown in red) where the rate determining step has a smaller ΔG≠.

  3. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    This graph is called the "Van 't Hoff plot" and is widely used to estimate the enthalpy and entropy of a chemical reaction. From this plot, − ⁠ Δ r H / R ⁠ is the slope, and ⁠ Δ r S / R ⁠ is the intercept of the linear fit.

  4. Free-energy relationship - Wikipedia

    en.wikipedia.org/wiki/Free-energy_relationship

    The Brønsted catalysis equation describes the relationship between the ionization constant of a series of catalysts and the reaction rate constant for a reaction on which the catalyst operates. The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant.

  5. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  6. Reaction coordinate - Wikipedia

    en.wikipedia.org/wiki/Reaction_coordinate

    In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway. Where possible it is usually a geometric parameter that changes during the conversion of one or more molecular entities , such as bond length or bond angle .

  7. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    A catalyst increases the rate of reaction without being consumed in the reaction. [8] In addition, the catalyst lowers the activation energy, but it does not change the energies of the original reactants or products, and so does not change equilibrium. [ 9 ]

  8. Exothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Exothermic_reaction

    The thermite reaction is famously exothermic. The reduction of iron(III) oxide by aluminium releases sufficient heat to yield molten iron. In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative." [1] [2] Exothermic reactions usually release heat.

  9. Le Chatelier's principle - Wikipedia

    en.wikipedia.org/wiki/Le_Chatelier's_principle

    A catalyst increases the rate of a reaction without being consumed in the reaction. The use of a catalyst does not affect the position and composition of the equilibrium of a reaction, because both the forward and backward reactions are sped up by the same factor. For example, consider the Haber process for the synthesis of ammonia (NH 3):