Search results
Results from the WOW.Com Content Network
For a dynamic two-dimensional point set subject to point insertions and deletions, an approximation to the diameter, with an approximation ratio that can be chosen arbitrarily close to one, can be maintained in time () per operation. [2]
Jung's theorem provides more general inequalities relating the diameter to the radius. [5] The isodiametric inequality or Bieberbach inequality, a relative of the isoperimetric inequality, states that, for a given diameter, the planar shape with the largest area is a disk, and the three-dimensional shape with the largest volume is a sphere.
A diameter of an ellipse is any line passing through the centre of the ellipse. [2] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [3] The longest diameter is called the major axis.
Three dimensional extent of an object m 3: L 3: extensive, scalar Volumetric flow rate: Q: Rate of change of volume with respect to time m 3 ⋅s −1: L 3 T −1: extensive, scalar Wavelength: λ: Perpendicular distance between repeating units of a wave m L: Wavenumber: k: Repetency or spatial frequency: the number of cycles per unit distance ...
Semicircle: one of the two possible arcs determined by the endpoints of a diameter, taking its midpoint as centre. In non-technical common usage it may mean the interior of the two-dimensional region bounded by a diameter and one of its arcs, that is technically called a half-disc. A half-disc is a special case of a segment, namely the largest one.
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...