Search results
Results from the WOW.Com Content Network
In population genetics, the Hardy–Weinberg principle, also known as the Hardy–Weinberg equilibrium, model, theorem, or law, states that allele and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences.
The Hardy–Weinberg principle provides the solution to how variation is maintained in a population with Mendelian inheritance. According to this principle, the frequencies of alleles (variations in a gene) will remain constant in the absence of selection, mutation, migration and genetic drift.
Genetic equilibrium itself, whether Hardy-Weinberg or otherwise, provides the groundwork for a number of applications, in including population genetics, conservation and evolutionary biology. With the rapid increase in whole genome sequences available as well as the proliferation of anonymous markers, models have been used to extend the initial ...
The Hardy–Weinberg law describes the relationship between allele and genotype frequencies when a population is not evolving. Let's examine the Hardy–Weinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1.
In 1908, G. H. Hardy and Wilhelm Weinberg modeled an idealised population to demonstrate that in the absence of selection, migration, random genetic drift, allele frequencies stay constant over time, and that in the presence of random mating, genotype frequencies are related to allele frequencies according to a binomial square principle called the Hardy-Weinberg law.
A de Finetti diagram. The curved line is the expected Hardy–Weinberg frequency as a function of p.. A de Finetti diagram is a ternary plot used in population genetics.It is named after the Italian statistician Bruno de Finetti (1906–1985) and is used to graph the genotype frequencies of populations, where there are two alleles and the population is diploid.
In population genetics, the Wahlund effect is a reduction of heterozygosity (that is when an organism has two different alleles at a locus) in a population caused by subpopulation structure. Namely, if two or more subpopulations are in a Hardy–Weinberg equilibrium but have different allele frequencies , the overall heterozygosity is reduced ...
In population genetics models, such as the Hardy–Weinberg model, it is assumed that species have no overlapping generations. In nature, however, many species do have overlapping generations. The overlapping generations are considered the norm rather than the exception.