Search results
Results from the WOW.Com Content Network
Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the ...
Polymers have both a melting temperature T m and a glass transition temperature T g. Above the T m, the polymer chains lose their molecular ordering and exhibit reptation, or mobility. Below the T m, but still above the T g, the polymer chains lose some of their long-range mobility and can form either crystalline or amorphous regions. In this ...
Some polymer solutions also have a lower critical solution temperature (LCST) or lower bound to a temperature range of partial miscibility. As shown in the diagram, for polymer solutions the LCST is higher than the UCST, so that there is a temperature interval of complete miscibility, with partial miscibility at both higher and lower temperatures.
When above the melting temperature but below the clearing point, the thermotropic LCPs will form liquid crystals. Above the clearing point, the melt will be isotropic and clear again. Frozen liquid crystals can be obtained by quenching liquid crystal polymers below the glass transition temperature.
The temperature range offered by the PCM technology provides a new horizon for the building services and refrigeration engineers regarding medium and high temperature energy storage applications. The scope of this thermal energy application is wide-ranging of solar heating, hot water, heating rejection (i.e., cooling tower), and dry cooler ...
The crystals are captured, stored, and sputter-coated with platinum at cryo-temperatures for imaging. The crystallization process appears to violate the second principle of thermodynamics. Whereas most processes that yield more orderly results are achieved by applying heat, crystals usually form at lower temperatures – especially by ...
The lower critical solution temperature (LCST) or lower consolute temperature is the critical temperature below which the components of a mixture are miscible in all proportions. [ 1 ] [ 2 ] The word lower indicates that the LCST is a lower bound to a temperature interval of partial miscibility, or miscibility for certain compositions only.
They are UV stable, in contrast to other bioplastics from polymers such as polylactic acid, partial ca. temperatures up to 180 °C, and show a low permeation of water. The crystallinity can lie in the range of a few to 70%.