Search results
Results from the WOW.Com Content Network
The main application of statistical power is "power analysis", a calculation of power usually done before an experiment is conducted using data from pilot studies or a literature review. Power analyses can be used to calculate the minimum sample size required so that one can be reasonably likely to detect an effect of a given size (in other ...
Additionally, the user must determine which of the many contexts this test is being used, such as a one-way ANOVA versus a multi-way ANOVA. In order to calculate power, the user must know four of five variables: either number of groups, number of observations, effect size, significance level (α), or power (1-β). G*Power has a built-in tool ...
The program provides methods that are appropriate for matched and independent t-tests, [2] survival analysis, [5] matched [6] and unmatched [7] [8] studies of dichotomous events, the Mantel-Haenszel test, [9] and linear regression. [3] The program can generate graphs of the relationships between power, sample size and the detectable alternative ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
For hand calculations, the test is feasible only in the case of a 2 × 2 contingency table. However the principle of the test can be extended to the general case of an m × n table, [8] [9] and some statistical packages provide a calculation (sometimes using a Monte Carlo method to obtain an approximation) for the more general case. [10]
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α.For example, according to the Neyman–Pearson lemma, the likelihood-ratio test is UMP for testing simple (point) hypotheses.