Search results
Results from the WOW.Com Content Network
Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor pyruvate derivatives (fermentation) is the final electron acceptor. Rather, an inorganic acceptor such as sulfate ( SO 2− 4 ), nitrate ( NO − 3 ), or sulfur (S) is used. [ 16 ]
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
The hypothesis proposes that a lack of oxygen in muscle cells results in a switch from cellular respiration to fermentation. Lactic acid created as a byproduct of fermentation of pyruvate from glycolysis accumulates in muscles causing a burning sensation and cramps. Research from 2006 has suggested that acidosis isn't the main cause of muscle ...
This definition distinguishes fermentation from aerobic respiration, where oxygen is the acceptor and types of anaerobic respiration, where an inorganic species is the acceptor. [citation needed] Fermentation had been defined differently in the past. In 1876, Louis Pasteur described it as "la vie sans air" (life without air). [7]
Anaerobic glycolysis is thought to have been the primary means of energy production in earlier organisms before oxygen was at high concentration in the atmosphere and thus would represent a more ancient form of energy production in cells. In mammals, lactate can be transformed by the liver back into glucose using the Cori cycle.
In aerobic respiration, oxygen is required. Using oxygen increases ATP production from 4 ATP molecules to about 30 ATP molecules. In anaerobic respiration, oxygen is not required. When oxygen is absent, the generation of ATP continues through fermentation. There are two types of fermentation: alcohol fermentation and lactic acid fermentation.
Ethanol fermentation, also called alcoholic fermentation, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products. Because yeasts perform this conversion in the absence of oxygen, alcoholic fermentation is considered an anaerobic process.
While the exact ATP output ranges based on considerations like the overall electrochemical gradient, aerobic respiration produces far more ATP than the anaerobic process of ethanol fermentation. The increased ATP and citrate from aerobic respiration allosterically inhibit the glycolysis enzyme phosphofructokinase 1 because less pyruvate is ...