Search results
Results from the WOW.Com Content Network
The spectrum of a matrix is the list of eigenvalues, repeated according to multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An important quantity associated with the spectrum is the maximum absolute value of any eigenvalue. This is known as the spectral radius of the matrix.
In the case of degenerate eigenvalues (an eigenvalue having more than one eigenvector), the eigenvectors have an additional freedom of linear transformation, that is to say, any linear (orthonormal) combination of eigenvectors sharing an eigenvalue (in the degenerate subspace) is itself an eigenvector (in the subspace).
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. [1]Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis.
Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.
In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...
Real, repeated eigenvalues require solving the coefficient matrix with an unknown vector and the first eigenvector to generate the second solution of a two-by-two system. However, if the matrix is symmetric, it is possible to use the orthogonal eigenvector to generate the second solution.
For every unit length eigenvector of its eigenvalue is (), so is the largest eigenvalue of . The same calculation performed on the orthogonal complement of u {\displaystyle \mathbf {u} } gives the next largest eigenvalue and so on.