enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The spectrum of a matrix is the list of eigenvalues, repeated according to multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An important quantity associated with the spectrum is the maximum absolute value of any eigenvalue. This is known as the spectral radius of the matrix.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In the case of degenerate eigenvalues (an eigenvalue having more than one eigenvector), the eigenvectors have an additional freedom of linear transformation, that is to say, any linear (orthonormal) combination of eigenvectors sharing an eigenvalue (in the degenerate subspace) is itself an eigenvector (in the subspace).

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. [1]Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis.

  6. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.

  7. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  8. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    Real, repeated eigenvalues require solving the coefficient matrix with an unknown vector and the first eigenvector to generate the second solution of a two-by-two system. However, if the matrix is symmetric, it is possible to use the orthogonal eigenvector to generate the second solution.

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    ⁠ For every unit length eigenvector ⁠ ⁠ of ⁠ ⁠ its eigenvalue is ⁠ (), ⁠ so ⁠ ⁠ is the largest eigenvalue of ⁠. ⁠ The same calculation performed on the orthogonal complement of ⁠ u {\displaystyle \mathbf {u} } ⁠ gives the next largest eigenvalue and so on.