Search results
Results from the WOW.Com Content Network
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation , speciation , and population structure .
A large gene pool indicates extensive genetic diversity, which is associated with robust populations that can survive bouts of intense selection.Meanwhile, low genetic diversity (see inbreeding and population bottlenecks) can cause reduced biological fitness and an increased chance of extinction, although as explained by genetic drift new genetic variants, that may cause an increase in the ...
In population genetics, the Watterson estimator is a method for describing the genetic diversity in a population. It was developed by Margaret Wu and G. A. Watterson in the 1970s. [1] [2] It is estimated by counting the number of polymorphic sites. It is a measure of the "population mutation rate" (the product of the effective population size ...
Population genomics is the large-scale comparison of DNA sequences of populations. Population genomics is a neologism that is associated with population genetics. Population genomics studies genome-wide effects to improve our understanding of microevolution so that we may learn the phylogenetic history and demography of a population. [1]
Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation , speciation , and population structure .
Genotype frequency in a population is the number of individuals with a given genotype divided by the total number of individuals in the population. [2] In population genetics, the genotype frequency is the frequency or proportion (i.e., 0 < f < 1) of genotypes in a population.
In simple terms, panmixia (or panmicticism) is the ability of individuals in a population to interbreed without restrictions; individuals are able to move about freely within their habitat, possibly over a range of hundreds to thousands of miles, and thus breed with other members of the population.
Tajima's D is a population genetic test statistic created by and named after the Japanese researcher Fumio Tajima. [1] Tajima's D is computed as the difference between two measures of genetic diversity: the mean number of pairwise differences and the number of segregating sites, each scaled so that they are expected to be the same in a neutrally evolving population of constant size.