Search results
Results from the WOW.Com Content Network
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
A standard Brunton compass, used commonly by geologists and surveyors to obtain a bearing in the field. In navigation, bearing or azimuth is the horizontal angle between the direction of an object and north or another object. The angle value can be specified in various angular units, such as degrees, mils, or grad. More specifically:
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.
Figure 1: Rangekeeper Coordinate System. The coordinate system has the target as its origin. The y axis value range to the target. US Navy rangekeepers during World War II used a moving coordinate system based on the line of sight (LOS) between the ship firing its gun (known as the "own ship") and the target (known as the "target").
Even though latitude is normally confined to the range [− π / 2 , π / 2 ], all the formulae given here apply to measuring distance around the complete meridian ellipse (including the anti-meridian). Thus the ranges of φ, β, and the rectifying latitude μ, are unrestricted.