enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.

  3. Optimal experimental design - Wikipedia

    en.wikipedia.org/wiki/Optimal_experimental_design

    Because of this reciprocity, minimizing the variance corresponds to maximizing the information. When the statistical model has several parameters, however, the mean of the parameter-estimator is a vector and its variance is a matrix. The inverse matrix of the variance-matrix is called the "information matrix". Because the variance of the ...

  4. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...

  5. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    The definitional equation of sample variance is = (¯), where the divisor is called the degrees of freedom (DF), the summation is called the sum of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample mean. ANOVA estimates 3 sample variances: a total variance based on all the observation ...

  6. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in BIC than in AIC for sample sizes greater than 7. [1] The BIC was developed by Gideon E. Schwarz and published in a 1978 paper, [2] as a large-sample approximation to the Bayes factor.

  7. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

  8. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    Since the sample-based C p statistic is an estimate of the MSPE, using C p for model selection does not completely guard against overfitting. For instance, it is possible that the selected model will be one in which the sample C p was a particularly severe underestimate of the MSPE.

  9. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    N = the sample size The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the ...