enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    The most common gamma emitter used in medical applications is the nuclear isomer technetium-99m which emits gamma rays in the same energy range as diagnostic X-rays. When this radionuclide tracer is administered to a patient, a gamma camera can be used to form an image of the radioisotope's distribution by detecting the gamma radiation emitted ...

  3. Gamma-ray laser - Wikipedia

    en.wikipedia.org/wiki/Gamma-ray_laser

    A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. [1] Potential applications for gamma-ray lasers include medical imaging, spacecraft propulsion, and cancer treatment.

  4. Commonly used gamma-emitting isotopes - Wikipedia

    en.wikipedia.org/wiki/Commonly_used_gamma...

    It has a half-life of 30 years, and decays by beta decay without gamma ray emission to a metastable state of barium-137 (137m Ba). Barium-137m has a half-life of a 2.6 minutes and is responsible for all of the gamma ray emission in this decay sequence. The ground state of barium-137 is stable. The photon energy (energy of a single gamma ray) of ...

  5. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In atomic and nuclear physics, the distinction between X-rays and gamma rays is based on sources: the photons generated from nuclear decay or other nuclear and subnuclear/particle process are termed gamma rays, whereas X-rays are generated by electronic transitions involving energetically deep inner atomic electrons.

  6. Nuclear technology - Wikipedia

    en.wikipedia.org/wiki/Nuclear_technology

    Gauges - Gauges use the exponential absorption law of gamma rays Level indicators: Source and detector are placed at opposite sides of a container, indicating the presence or absence of material in the horizontal radiation path. Beta or gamma sources are used, depending on the thickness and the density of the material to be measured.

  7. Remote sensing - Wikipedia

    en.wikipedia.org/wiki/Remote_sensing

    There are applications of gamma rays to mineral exploration through remote sensing. In 1972 more than two million dollars were spent on remote sensing applications with gamma rays to mineral exploration. Gamma rays are used to search for deposits of uranium. By observing radioactivity from potassium, porphyry copper deposits can be located.

  8. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. [1] The reactions are called (γ,n), (γ,p), and (γ,α). Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier than iron .

  9. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).