Search results
Results from the WOW.Com Content Network
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [ 1 ] and used by him to prove the parabolic form of projectile motion.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Coupled pendulums can affect each other's motion, either through a direction connection (such as a spring connecting the bobs) or through motions in a supporting structure (such as a tabletop). The equations of motion for two identical simple pendulums coupled by a spring connecting the bobs can be obtained using Lagrangian mechanics.
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
This second equation depends only on the vertical reaction force, thus the equation can be used to solve for the normal force. The first equation can be used to solve for the horizontal reaction force. In order to complete the equations of motion, the acceleration of the point mass attached to the pendulum must be computed.
Ideal projectile motion states that there is no air resistance and no change in gravitational acceleration.This assumption simplifies the mathematics greatly, and is a close approximation of actual projectile motion in cases where the distances travelled are small.
In physics, the monkey and hunter is a hypothetical scenario often used to illustrate the effect of gravity on projectile motion. [1] It can be presented as exercise problem or as a demonstration. The essentials of the problem are stated in many introductory guides to physics. [2] [3] In essence, the problem is as follows:
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.