Search results
Results from the WOW.Com Content Network
Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of. For example, +. 2.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.
Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
Such a vector must have all but two coordinates equal to 0, one coordinate equal to 1, and one equal to −1, so there are n 2 + n roots in all. One choice of simple roots expressed in the standard basis is α i = e i − e i +1 for 1 ≤ i ≤ n .
That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.