Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
This Biological database -related article is a stub. You can help Wikipedia by expanding it.
The trp operon additionally uses attenuation to control expression of the operon, a second negative feedback control mechanism. The trp operon is well-studied and is commonly used as an example of gene regulation in bacteria alongside the lac operon .
This page was last edited on 8 September 2018, at 01:24 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A structural gene is a gene that codes for any RNA or protein product other than a regulatory factor (i.e. regulatory protein).A term derived from the lac operon, structural genes are typically viewed as those containing sequences of DNA corresponding to the amino acids of a protein that will be produced, as long as said protein does not function to regulate gene expression.
A conserved operon in three bacterial genomes (here: genes involved in Tryptophan biosynthesis). The conserved order suggests that these genes act together. Operons are clusters of genes that are transcribed together. Based on co-transcription data but also based on the fact that the order of genes in operons is often conserved across many ...
Therefore, the rest of the operon will be transcribed and translated, so that tryptophan can be produced. Thus, domain 4 is an attenuator. Without domain 4, translation can continue regardless of the level of tryptophan. [9] The attenuator sequence has its codons translated into a leader peptide, but is not part of the trp operon gene sequence.
The gal operon contains two operators, O E (for external) and O I (for internal). The former is just upstream of the promoter, and the latter is just after the galE gene (the first gene in the operon). These operators bind the repressor, GalR, which is encoded from outside the operator region. For this repressor protein to function properly ...