Search results
Results from the WOW.Com Content Network
Cascading diffusion model stacks multiple diffusion models one after another, in the style of Progressive GAN. The lowest level is a standard diffusion model that generate 32x32 image, then the image would be upscaled by a diffusion model specifically trained for upscaling, and the process repeats. [53]
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [3]Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian) on training images.
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
Demonstration of the use of DreamBooth to fine-tune the Stable Diffusion v1.5 diffusion model, using training data obtained from Category:Jimmy Wales on Wikimedia Commons. Depicted here are algorithmically generated images of Jimmy Wales, co-founder of Wikipedia, performing bench press exercises at a fitness gym.
Another principle is that CSAM will not be included in training datasets for AI models. ... source database of images used to train Stability AI’s Stable Diffusion 1.5, a version of one of the ...
A generative image model such as Stable Diffusion is able to model the stylistic characteristics of an artist like Pablo Picasso (including his particular brush strokes, use of colour, perspective, and so on), and a user can engineer a prompt such as "an astronaut riding a horse, by Picasso" to cause the model to generate a novel image applying ...
In probability theory and statistics, diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.