enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...

  3. Probabilistic metric space - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_metric_space

    A probability metric D between two random variables X and Y may be defined, for example, as (,) = | | (,) where F(x, y) denotes the joint probability density function of the random variables X and Y.

  4. File:Negative joint probability 2.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Negative_joint...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate

  5. Chapman–Kolmogorov equation - Wikipedia

    en.wikipedia.org/wiki/Chapman–Kolmogorov_equation

    where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is

  6. Chow–Liu tree - Wikipedia

    en.wikipedia.org/wiki/Chow–Liu_tree

    In probability theory and statistics Chow–Liu tree is an efficient method for constructing a second-order product approximation of a joint probability distribution, first described in a paper by Chow & Liu (1968). The goals of such a decomposition, as with such Bayesian networks in general, may be either data compression or inference.

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Download as PDF; Printable version; ... It is constructed from the joint probability distribution of the random variable that ... One example occurs in 2×2 tables, ...

  8. Exchangeable random variables - Wikipedia

    en.wikipedia.org/wiki/Exchangeable_random_variables

    The von Neumann extractor is a randomness extractor that depends on exchangeability: it gives a method to take an exchangeable sequence of 0s and 1s (Bernoulli trials), with some probability p of 0 and = of 1, and produce a (shorter) exchangeable sequence of 0s and 1s with probability 1/2.

  9. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.