Search results
Results from the WOW.Com Content Network
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
The rows of Pascal's triangle are examples for logarithmically concave sequences. In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n.
The Brunn–Minkowski inequality asserts that the Lebesgue measure is log-concave. The restriction of the Lebesgue measure to any convex set is also log-concave.. By a theorem of Borell, [2] a probability measure on R^d is log-concave if and only if it has a density with respect to the Lebesgue measure on some affine hyperplane, and this density is a logarithmically concave function.
Log probabilities make some mathematical manipulations easier to perform. Optimization. Since most common probability distributions —notably the exponential family —are only logarithmically concave , [ 2 ] [ 3 ] and concavity of the objective function plays a key role in the maximization of a function such as probability, optimizers work ...
An extension of rejection sampling that can be used to overcome this difficulty and efficiently sample from a wide variety of distributions (provided that they have log-concave density functions, which is in fact the case for most of the common distributions—even those whose density functions are not concave themselves) is known as adaptive ...
Log-concave may refer to: Logarithmically concave function; Logarithmically concave measure; Logarithmically concave sequence This page was last edited on 22 ...
Such algorithms are called output-sensitive algorithms. They may be asymptotically more efficient than Θ(n log n) algorithms in cases when h = o(n). The lower bound on worst-case running time of output-sensitive convex hull algorithms was established to be Ω(n log h) in the planar case. [1]
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).