Search results
Results from the WOW.Com Content Network
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
The Brunn–Minkowski inequality asserts that the Lebesgue measure is log-concave. The restriction of the Lebesgue measure to any convex set is also log-concave.. By a theorem of Borell, [2] a probability measure on R^d is log-concave if and only if it has a density with respect to the Lebesgue measure on some affine hyperplane, and this density is a logarithmically concave function.
In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .
An extension of rejection sampling that can be used to overcome this difficulty and efficiently sample from a wide variety of distributions (provided that they have log-concave density functions, which is in fact the case for most of the common distributions—even those whose density functions are not concave themselves) is known as adaptive ...
Illustrating how the log of the density function changes when K = 3 as we change the vector α from α = (0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual 's equal to each other. The Dirichlet distribution of order K ≥ 2 with parameters α 1 , ..., α K > 0 has a probability density function with respect to Lebesgue measure on ...
But for practical purposes it is more convenient to work with the log-likelihood function in maximum likelihood estimation, in particular since most common probability distributions—notably the exponential family—are only logarithmically concave, [34] [35] and concavity of the objective function plays a key role in the maximization.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
The rows of Pascal's triangle are examples for logarithmically concave sequences. In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n.