Search results
Results from the WOW.Com Content Network
For example, to model the general concept of "equality" as a binary relation =, take the domain and codomain to be the "class of all sets", which is not a set in the usual set theory. In most mathematical contexts, references to the relations of equality, membership and subset are harmless because they can be understood implicitly to be ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false.
If X and Y are finite sets, then there exists a bijection between the two sets X and Y if and only if X and Y have the same number of elements. Indeed, in axiomatic set theory , this is taken as the definition of "same number of elements" ( equinumerosity ), and generalising this definition to infinite sets leads to the concept of cardinal ...
Euler diagram illustrating that the set of "animals with four legs" is a subset of "animals", but the set of "minerals" is a disjoint set (it has no members in common) with "animals" Euler diagram showing the relationships between different Solar System objects
Fig. 3 Graph of the divisibility of numbers from 1 to 4. This set is partially, but not totally, ordered because there is a relationship from 1 to every other number, but there is no relationship from 2 to 3 or 3 to 4. Standard examples of posets arising in mathematics include:
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
A group in which every element is its own inverse (or, equivalently, in which every element has order 2) is sometimes called a Boolean group; [2] [3] the symmetric difference provides a prototypical example of such groups. Sometimes the Boolean group is actually defined as the symmetric difference operation on a set. [4]