Search results
Results from the WOW.Com Content Network
The user, rather than the database itself, typically initiates data curation and maintains metadata. [8] According to the University of Illinois' Graduate School of Library and Information Science, "Data curation is the active and on-going management of data through its lifecycle of interest and usefulness to scholarship, science, and education; curation activities enable data discovery and ...
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).
MLOps is the set of practices at the intersection of Machine Learning, DevOps and Data Engineering. MLOps or ML Ops is a paradigm that aims to deploy and maintain machine learning models in production reliably and efficiently. The word is a compound of "machine learning" and the continuous delivery practice (CI/CD) of DevOps in the software ...
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
The Data Asset Framework or DAF is a data audit methodology developed by HATII at the University of Glasgow in conjunction with the Digital Curation Centre. Originally the Data Audit Framework, the Data Asset Framework is an interview protocol utilised by educational institutions to better understand their growing research data collections.
In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]
Data analysis focuses on extracting insights and drawing conclusions from structured data, while data science involves a more comprehensive approach that combines statistical analysis, computational methods, and machine learning to extract insights, build predictive models, and drive data-driven decision-making. Both fields use data to ...
As an increasing portion of the world’s information output shifts from analog to digital form, preservation metadata is an essential component of most digital preservation strategies, including digital curation, data management, digital collections management and the preservation of digital information over the long-term.