enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    The carrier concentration can be calculated by treating electrons moving back and forth across the bandgap just like the equilibrium of a reversible reaction from chemistry, leading to an electronic mass action law. The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials:

  3. Mass action law (electronics) - Wikipedia

    en.wikipedia.org/wiki/Mass_action_law_(electronics)

    Using the carrier concentration equations given above, the mass action law can be stated as = ⁡ =, where E g is the band gap energy given by E g = E c − E v. The above equation holds true even for lightly doped extrinsic semiconductors as the product n p {\displaystyle np} is independent of doping concentration.

  4. Doping (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Doping_(semiconductor)

    where n 0 is the concentration of conducting electrons, p 0 is the conducting hole concentration, and n i is the material's intrinsic carrier concentration. The intrinsic carrier concentration varies between materials and is dependent on temperature. Silicon's n i, for example, is roughly 1.08×10 10 cm −3 at 300 kelvins, about room ...

  5. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    With increasing temperature, phonon concentration increases and causes increased scattering. Thus lattice scattering lowers the carrier mobility more and more at higher temperature. Theoretical calculations reveal that the mobility in non-polar semiconductors, such as silicon and germanium, is dominated by acoustic phonon interaction.

  6. Charge carrier - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier

    Free carrier concentration is the concentration of free carriers in a doped semiconductor. It is similar to the carrier concentration in a metal and for the purposes of calculating currents or drift velocities can be used in the same way. Free carriers are electrons that have been introduced into the conduction band (valence band) by doping ...

  7. Intrinsic semiconductor - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_semiconductor

    An intrinsic semiconductor, also called a pure semiconductor, undoped semiconductor or i-type semiconductor, is a semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.

  8. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    Carrier generation describes processes by which electrons gain energy and move from the valence band to the conduction band, producing two mobile carriers; while recombination describes processes by which a conduction band electron loses energy and re-occupies the energy state of an electron hole in the valence band.

  9. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    After most of the donors or acceptors have lost their carriers, the resistance starts to increase again slightly due to the reducing mobility of carriers (much as in a metal). At higher temperatures, they behave like intrinsic semiconductors as the carriers from the donors/acceptors become insignificant compared to the thermally generated carriers.