Search results
Results from the WOW.Com Content Network
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga 's systematic work on their properties.
Download as PDF; Printable version; ... Ellipse. Parabola. ... Cissoid of Diocles. Conchoid of de Sluze. Cubic with double point. Strophoid. Semicubical parabola ...
Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Ellipse; Parabola; Hyperbola. Unit hyperbola; Degree 3. Cubic plane curves include
This is the equation of an ellipse (<) or a parabola (=) or a hyperbola (>). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram).
Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two ...
The vertices of the hyperbola are the foci of the ellipse and its foci are the vertices of the ellipse (see diagram). or two parabolas, which are contained in two orthogonal planes and the vertex of one parabola is the focus of the other and vice versa. Focal conics play an essential role answering the question: "Which right circular cones ...
The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex.