Search results
Results from the WOW.Com Content Network
Aliphatic compounds can be saturated, joined by single bonds (), or unsaturated, with double bonds or triple bonds ().If other elements (heteroatoms) are bound to the carbon chain, the most common being oxygen, nitrogen, sulfur, and chlorine, it is no longer a hydrocarbon, and therefore no longer an aliphatic compound.
The epicuticular waxes of plants are mixtures of substituted long-chain aliphatic hydrocarbons, containing alkanes, alkyl esters, fatty acids, primary and secondary alcohols, diols, ketones and aldehydes. [2] From the commercial perspective, the most important plant wax is carnauba wax, a hard wax obtained from the Brazilian palm Copernicia ...
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
move to sidebar hide. From Wikipedia, the free encyclopedia
Limonene (/ ˈ l ɪ m ə n ˌ iː n /) is a colorless liquid aliphatic hydrocarbon classified as a cyclic monoterpene, and is the major component in the essential oil of citrus fruit peels. [1] The (+)- isomer , occurring more commonly in nature as the fragrance of oranges, is a flavoring agent in food manufacturing.
Gasoline is the most widely used liquid fuel. Gasoline, as it is known in United States and Canada, or petrol virtually everywhere else, is made of hydrocarbon molecules (compounds that contain hydrogen and carbon only) forming aliphatic compounds, or chains of carbons with hydrogen atoms attached.
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
Naphthenic acids are represented by a general formula C n H 2n-z O 2, where n indicates the carbon number and z specifies a homologous series. The z is equal to 0 for saturated, acyclic acids and increases to 2 in monocyclic naphthenic acids, to 4 in bicyclic naphthenic acids, to 6 in tricyclic acids, and to 8 in tetracyclic acids. [5]