enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    An electric field (sometimes called E-field [1]) is a physical field that surrounds electrically charged particles.In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capacity to exert attractive or repulsive forces on another charged object.

  3. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    An electric field is produced when the charge is stationary with respect to an observer measuring the properties of the charge, and a magnetic field as well as an electric field are produced when the charge moves, creating an electric current with respect to this observer. Over time, it was realized that the electric and magnetic fields are ...

  4. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    where all boldfaced quantities are vectors: F is the force that a particle with charge q experiences, E is the electric field at the location of the particle, v is the velocity of the particle, B is the magnetic field at the location of the particle. The above equation illustrates that the Lorentz force is the sum of two vectors.

  5. Field (physics) - Wikipedia

    en.wikipedia.org/wiki/Field_(physics)

    He realized that electric and magnetic fields are not only fields of force which dictate the motion of particles, but also have an independent physical reality because they carry energy. These ideas eventually led to the creation, by James Clerk Maxwell , of the first unified field theory in physics with the introduction of equations for the ...

  6. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    It is possible to define the potential of certain force fields so that the potential energy of an object in that field depends only on the position of the object with respect to the field. Two such force fields are a gravitational field and an electric field (in the absence of time-varying magnetic fields).

  7. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.

  8. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.

  9. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    An electric field is a vector field that associates to each point in space the Coulomb force experienced by a unit test charge. [19] The strength and direction of the Coulomb force F {\textstyle \mathbf {F} } on a charge q t {\textstyle q_{t}} depends on the electric field E {\textstyle \mathbf {E} } established by other charges that it finds ...